Optimizers
- 
class marius.nn.Optimizer
 
- 
__init__()
 
- 
clear_grad(self: marius._nn.Optimizer) → None
 
- 
property num_steps
 
- 
reset_state(self: marius._nn.Optimizer) → None
 
- 
step(self: marius._nn.Optimizer) → None
 
- 
class marius.nn.SGDOptimizer
 
- 
__init__(self: marius._nn.SGDOptimizer, param_dict: torch._C.cpp.OrderedTensorDict, learning_rate: float) → None
 
- 
property learning_rate
 
- 
class marius.nn.AdagradOptimizer
 
- 
__init__(self: marius._nn.AdagradOptimizer, param_dict: torch._C.cpp.OrderedTensorDict, options: marius._config.AdagradOptions) → None
 
- 
__init__(self: marius._nn.AdagradOptimizer, param_dict: torch._C.cpp.OrderedTensorDict, lr: float = 0.1, eps: float = 1e-10, lr_decay: float = 0, init_value: float = 0, weight_decay: float = 0) → None
 
- 
property eps
 
- 
property init_value
 
- 
property learning_rate
 
- 
property lr_decay
 
- 
property weight_decay
 
- 
class marius.nn.AdamOptimizer
 
- 
__init__(self: marius._nn.AdamOptimizer, param_dict: torch._C.cpp.OrderedTensorDict, options: marius._config.AdamOptions) → None
 
- 
__init__(self: marius._nn.AdamOptimizer, param_dict: torch._C.cpp.OrderedTensorDict, lr: float = 0.1, eps: float = 1e-08, beta_1: float = 0.9, beta_2: float = 0.999, weight_decay: float = 0, amsgrad: bool = False) → None
 
- 
property amsgrad
 
- 
property beta_1
 
- 
property beta_2
 
- 
property eps
 
- 
property learning_rate
 
- 
property weight_decay