Optimizers
-
class marius.nn.Optimizer
-
__init__()
-
clear_grad(self: marius._nn.Optimizer) → None
-
property num_steps
-
reset_state(self: marius._nn.Optimizer) → None
-
step(self: marius._nn.Optimizer) → None
-
class marius.nn.SGDOptimizer
-
__init__(self: marius._nn.SGDOptimizer, param_dict: torch._C.cpp.OrderedTensorDict, learning_rate: float) → None
-
property learning_rate
-
class marius.nn.AdagradOptimizer
-
__init__(self: marius._nn.AdagradOptimizer, param_dict: torch._C.cpp.OrderedTensorDict, options: marius._config.AdagradOptions) → None
-
__init__(self: marius._nn.AdagradOptimizer, param_dict: torch._C.cpp.OrderedTensorDict, lr: float = 0.1, eps: float = 1e-10, lr_decay: float = 0, init_value: float = 0, weight_decay: float = 0) → None
-
property eps
-
property init_value
-
property learning_rate
-
property lr_decay
-
property weight_decay
-
class marius.nn.AdamOptimizer
-
__init__(self: marius._nn.AdamOptimizer, param_dict: torch._C.cpp.OrderedTensorDict, options: marius._config.AdamOptions) → None
-
__init__(self: marius._nn.AdamOptimizer, param_dict: torch._C.cpp.OrderedTensorDict, lr: float = 0.1, eps: float = 1e-08, beta_1: float = 0.9, beta_2: float = 0.999, weight_decay: float = 0, amsgrad: bool = False) → None
-
property amsgrad
-
property beta_1
-
property beta_2
-
property eps
-
property learning_rate
-
property weight_decay