Model

class marius.nn.Model
__init__(self: marius._nn.Model, arg0: GeneralEncoder, arg1: Decoder, arg2: marius._nn.LossFunction, arg3: Reporter) None
__init__(self: marius._nn.Model, encoder: GeneralEncoder, decoder: Decoder, loss: marius._nn.LossFunction = None, reporter: Reporter = None, sparse_lr: float = 0.1) None
broadcast(self: marius._nn.Model, devices: List[torch.device]) None
forward_lp(self: marius._nn.Model, batch: marius._data.Batch, train: bool) Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
forward_nc(self: marius._nn.Model, node_embeddings: Optional[torch.Tensor], node_features: Optional[torch.Tensor], dense_graph: marius._data.DENSEGraph, train: bool) torch.Tensor
all_reduce(self: marius._nn.Model) None
clear_grad(self: marius._nn.Model) None
clear_grad_all(self: marius._nn.Model) None
property decoder
property device
property device_models
property encoder
evaluate_batch(self: marius._nn.Model, batch: marius._data.Batch) None
property learning_task
load(self: marius._nn.Model, directory: str, train: bool) None
property loss_function
property optimizers
property reporter
save(self: marius._nn.Model, directory: str) None
property sparse_lr
step(self: marius._nn.Model) None
step_all(self: marius._nn.Model) None
train_batch(self: marius._nn.Model, batch: marius._data.Batch, call_step: bool = True) None