Model
- 
class marius.nn.Model
 
- 
__init__(self: marius._nn.Model, arg0: GeneralEncoder, arg1: Decoder, arg2: marius._nn.LossFunction, arg3: Reporter) → None
 
- 
__init__(self: marius._nn.Model, encoder: GeneralEncoder, decoder: Decoder, loss: marius._nn.LossFunction = None, reporter: Reporter = None, sparse_lr: float = 0.1) → None
 
- 
broadcast(self: marius._nn.Model, devices: List[torch.device]) → None
 
- 
forward_lp(self: marius._nn.Model, batch: marius._data.Batch, train: bool) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
 
- 
forward_nc(self: marius._nn.Model, node_embeddings: Optional[torch.Tensor], node_features: Optional[torch.Tensor], dense_graph: marius._data.DENSEGraph, train: bool) → torch.Tensor
 
- 
all_reduce(self: marius._nn.Model) → None
 
- 
clear_grad(self: marius._nn.Model) → None
 
- 
clear_grad_all(self: marius._nn.Model) → None
 
- 
property decoder
 
- 
property device
 
- 
property device_models
 
- 
property encoder
 
- 
evaluate_batch(self: marius._nn.Model, batch: marius._data.Batch) → None
 
- 
property learning_task
 
- 
load(self: marius._nn.Model, directory: str, train: bool) → None
 
- 
property loss_function
 
- 
property optimizers
 
- 
property reporter
 
- 
save(self: marius._nn.Model, directory: str) → None
 
- 
property sparse_lr
 
- 
step(self: marius._nn.Model) → None
 
- 
step_all(self: marius._nn.Model) → None
 
- 
train_batch(self: marius._nn.Model, batch: marius._data.Batch, call_step: bool = True) → None