Model
-
class marius.nn.Model
-
__init__(self: marius._nn.Model, arg0: GeneralEncoder, arg1: Decoder, arg2: marius._nn.LossFunction, arg3: Reporter) → None
-
__init__(self: marius._nn.Model, encoder: GeneralEncoder, decoder: Decoder, loss: marius._nn.LossFunction = None, reporter: Reporter = None, sparse_lr: float = 0.1) → None
-
broadcast(self: marius._nn.Model, devices: List[torch.device]) → None
-
forward_lp(self: marius._nn.Model, batch: marius._data.Batch, train: bool) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
-
forward_nc(self: marius._nn.Model, node_embeddings: Optional[torch.Tensor], node_features: Optional[torch.Tensor], dense_graph: marius._data.DENSEGraph, train: bool) → torch.Tensor
-
all_reduce(self: marius._nn.Model) → None
-
clear_grad(self: marius._nn.Model) → None
-
clear_grad_all(self: marius._nn.Model) → None
-
property decoder
-
property device
-
property device_models
-
property encoder
-
evaluate_batch(self: marius._nn.Model, batch: marius._data.Batch) → None
-
property learning_task
-
load(self: marius._nn.Model, directory: str, train: bool) → None
-
property loss_function
-
property optimizers
-
property reporter
-
save(self: marius._nn.Model, directory: str) → None
-
property sparse_lr
-
step(self: marius._nn.Model) → None
-
step_all(self: marius._nn.Model) → None
-
train_batch(self: marius._nn.Model, batch: marius._data.Batch, call_step: bool = True) → None