marius_config
- marius.tools.configuration.marius_config.get_model_dir_path(dataset_dir)
- class marius.tools.configuration.marius_config.NeighborSamplingConfig(type='ALL', options=NeighborSamplingOptions(), use_incoming_nbrs=True, use_outgoing_nbrs=True, use_hashmap_sets=True)
- Parameters
type (str) –
options (marius.tools.configuration.datatypes.NeighborSamplingOptions) –
use_incoming_nbrs (bool) –
use_outgoing_nbrs (bool) –
use_hashmap_sets (bool) –
- Return type
None
- type: str = 'ALL'
- options: marius.tools.configuration.datatypes.NeighborSamplingOptions = NeighborSamplingOptions()
- use_incoming_nbrs: bool = True
- use_outgoing_nbrs: bool = True
- use_hashmap_sets: bool = True
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.OptimizerConfig(type='ADAGRAD', options=AdagradOptions(learning_rate=0.1, eps=1e-10, init_value=0, lr_decay=0, weight_decay=0))
- Parameters
type (str) –
options (marius.tools.configuration.datatypes.OptimizerOptions) –
- Return type
None
- type: str = 'ADAGRAD'
- options: marius.tools.configuration.datatypes.OptimizerOptions = AdagradOptions(learning_rate=0.1, eps=1e-10, init_value=0, lr_decay=0, weight_decay=0)
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.InitConfig(type='GLOROT_UNIFORM', options=InitOptions())
- Parameters
type (str) –
options (marius.tools.configuration.datatypes.InitOptions) –
- Return type
None
- type: str = 'GLOROT_UNIFORM'
- options: marius.tools.configuration.datatypes.InitOptions = InitOptions()
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.LossConfig(type='SOFTMAX_CE', options=LossOptions(reduction='SUM'))
- Parameters
type (str) –
options (marius.tools.configuration.datatypes.LossOptions) –
- Return type
None
- type: str = 'SOFTMAX_CE'
- options: marius.tools.configuration.datatypes.LossOptions = LossOptions(reduction='SUM')
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.LayerConfig(type=None, options=LayerOptions(), input_dim=- 1, output_dim=- 1, init=InitConfig(type='GLOROT_UNIFORM', options=InitOptions()), optimizer=OptimizerConfig(type='DEFAULT', options=AdagradOptions(learning_rate=0.1, eps=1e-10, init_value=0, lr_decay=0, weight_decay=0)), bias=False, bias_init=InitConfig(type='ZEROS', options=InitOptions()), activation='NONE')
- Parameters
type (str) –
options (marius.tools.configuration.datatypes.LayerOptions) –
input_dim (int) –
output_dim (int) –
init (marius.tools.configuration.marius_config.InitConfig) –
optimizer (marius.tools.configuration.marius_config.OptimizerConfig) –
bias (bool) –
bias_init (marius.tools.configuration.marius_config.InitConfig) –
activation (str) –
- Return type
None
- type: str = None
- options: marius.tools.configuration.datatypes.LayerOptions = LayerOptions()
- input_dim: int = -1
- output_dim: int = -1
- init: marius.tools.configuration.marius_config.InitConfig = InitConfig(type='GLOROT_UNIFORM', options=InitOptions())
- optimizer: marius.tools.configuration.marius_config.OptimizerConfig = OptimizerConfig(type='DEFAULT', options=AdagradOptions(learning_rate=0.1, eps=1e-10, init_value=0, lr_decay=0, weight_decay=0))
- bias: bool = False
- bias_init: marius.tools.configuration.marius_config.InitConfig = InitConfig(type='ZEROS', options=InitOptions())
- activation: str = 'NONE'
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.EncoderConfig(layers=<factory>, train_neighbor_sampling=<factory>, eval_neighbor_sampling=<factory>, embedding_dim=-1)
- Parameters
layers (List[List[marius.tools.configuration.marius_config.LayerConfig]]) –
train_neighbor_sampling (List[marius.tools.configuration.marius_config.NeighborSamplingConfig]) –
eval_neighbor_sampling (List[marius.tools.configuration.marius_config.NeighborSamplingConfig]) –
embedding_dim (int) –
- Return type
None
- layers: List[List[marius.tools.configuration.marius_config.LayerConfig]]
- train_neighbor_sampling: List[marius.tools.configuration.marius_config.NeighborSamplingConfig]
- eval_neighbor_sampling: List[marius.tools.configuration.marius_config.NeighborSamplingConfig]
- embedding_dim: int = -1
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.DecoderConfig(type='DISTMULT', options=DecoderOptions(), optimizer=OptimizerConfig(type='ADAGRAD', options=AdagradOptions(learning_rate=0.1, eps=1e-10, init_value=0, lr_decay=0, weight_decay=0)))
- Parameters
type (str) –
options (marius.tools.configuration.datatypes.DecoderOptions) –
optimizer (marius.tools.configuration.marius_config.OptimizerConfig) –
- Return type
None
- type: str = 'DISTMULT'
- options: marius.tools.configuration.datatypes.DecoderOptions = DecoderOptions()
- optimizer: marius.tools.configuration.marius_config.OptimizerConfig = OptimizerConfig(type='ADAGRAD', options=AdagradOptions(learning_rate=0.1, eps=1e-10, init_value=0, lr_decay=0, weight_decay=0))
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.ModelConfig(random_seed='???', learning_task='???', encoder='???', decoder='???', loss='???', dense_optimizer=OptimizerConfig(type='ADAGRAD', options=AdagradOptions(learning_rate=0.1, eps=1e-10, init_value=0, lr_decay=0, weight_decay=0)), sparse_optimizer=OptimizerConfig(type='ADAGRAD', options=AdagradOptions(learning_rate=0.1, eps=1e-10, init_value=0, lr_decay=0, weight_decay=0)))
- Parameters
random_seed (int) –
learning_task (str) –
encoder (marius.tools.configuration.marius_config.EncoderConfig) –
decoder (marius.tools.configuration.marius_config.DecoderConfig) –
loss (marius.tools.configuration.marius_config.LossConfig) –
dense_optimizer (marius.tools.configuration.marius_config.OptimizerConfig) –
sparse_optimizer (marius.tools.configuration.marius_config.OptimizerConfig) –
- Return type
None
- random_seed: int = '???'
- learning_task: str = '???'
- encoder: marius.tools.configuration.marius_config.EncoderConfig = '???'
- decoder: marius.tools.configuration.marius_config.DecoderConfig = '???'
- loss: marius.tools.configuration.marius_config.LossConfig = '???'
- dense_optimizer: marius.tools.configuration.marius_config.OptimizerConfig = OptimizerConfig(type='ADAGRAD', options=AdagradOptions(learning_rate=0.1, eps=1e-10, init_value=0, lr_decay=0, weight_decay=0))
- sparse_optimizer: marius.tools.configuration.marius_config.OptimizerConfig = OptimizerConfig(type='ADAGRAD', options=AdagradOptions(learning_rate=0.1, eps=1e-10, init_value=0, lr_decay=0, weight_decay=0))
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return:- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.StorageBackendConfig(type='DEVICE_MEMORY', options=StorageOptions(dtype='float'))
- Parameters
type (str) –
options (marius.tools.configuration.datatypes.StorageOptions) –
- Return type
None
- type: str = 'DEVICE_MEMORY'
- options: marius.tools.configuration.datatypes.StorageOptions = StorageOptions(dtype='float')
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.DatasetConfig(dataset_dir='???', num_edges='???', num_nodes='???', num_relations=1, num_train='???', num_valid=- 1, num_test=- 1, node_feature_dim=- 1, rel_feature_dim=- 1, num_classes=- 1, initialized=False)
- Parameters
dataset_dir (str) –
num_edges (int) –
num_nodes (int) –
num_relations (int) –
num_train (int) –
num_valid (int) –
num_test (int) –
node_feature_dim (int) –
rel_feature_dim (int) –
num_classes (int) –
initialized (bool) –
- Return type
None
- dataset_dir: str = '???'
- num_edges: int = '???'
- num_nodes: int = '???'
- num_relations: int = 1
- num_train: int = '???'
- num_valid: int = -1
- num_test: int = -1
- node_feature_dim: int = -1
- rel_feature_dim: int = -1
- num_classes: int = -1
- initialized: bool = False
- populate_dataset_stats()
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.StorageConfig(device_type='cpu', device_ids=<factory>, dataset=DatasetConfig(dataset_dir='???', num_edges='???', num_nodes='???', num_relations=1, num_train='???', num_valid=-1, num_test=-1, node_feature_dim=-1, rel_feature_dim=-1, num_classes=-1, initialized=False), edges=StorageBackendConfig(type='DEVICE_MEMORY', options=StorageOptions(dtype='int')), nodes=StorageBackendConfig(type='DEVICE_MEMORY', options=StorageOptions(dtype='int')), embeddings=StorageBackendConfig(type='DEVICE_MEMORY', options=StorageOptions(dtype='float')), features=StorageBackendConfig(type='DEVICE_MEMORY', options=StorageOptions(dtype='float')), prefetch=True, shuffle_input=True, full_graph_evaluation=True, export_encoded_nodes=False, model_dir='???', log_level='info')
- Parameters
device_type (str) –
device_ids (List[int]) –
dataset (marius.tools.configuration.marius_config.DatasetConfig) –
edges (marius.tools.configuration.marius_config.StorageBackendConfig) –
nodes (marius.tools.configuration.marius_config.StorageBackendConfig) –
embeddings (marius.tools.configuration.marius_config.StorageBackendConfig) –
features (marius.tools.configuration.marius_config.StorageBackendConfig) –
prefetch (bool) –
shuffle_input (bool) –
full_graph_evaluation (bool) –
export_encoded_nodes (bool) –
model_dir (str) –
log_level (str) –
- Return type
None
- device_type: str = 'cpu'
- device_ids: List[int]
- dataset: marius.tools.configuration.marius_config.DatasetConfig = DatasetConfig(dataset_dir='???', num_edges='???', num_nodes='???', num_relations=1, num_train='???', num_valid=-1, num_test=-1, node_feature_dim=-1, rel_feature_dim=-1, num_classes=-1, initialized=False)
- edges: marius.tools.configuration.marius_config.StorageBackendConfig = StorageBackendConfig(type='DEVICE_MEMORY', options=StorageOptions(dtype='int'))
- nodes: marius.tools.configuration.marius_config.StorageBackendConfig = StorageBackendConfig(type='DEVICE_MEMORY', options=StorageOptions(dtype='int'))
- embeddings: marius.tools.configuration.marius_config.StorageBackendConfig = StorageBackendConfig(type='DEVICE_MEMORY', options=StorageOptions(dtype='float'))
- features: marius.tools.configuration.marius_config.StorageBackendConfig = StorageBackendConfig(type='DEVICE_MEMORY', options=StorageOptions(dtype='float'))
- prefetch: bool = True
- shuffle_input: bool = True
- full_graph_evaluation: bool = True
- export_encoded_nodes: bool = False
- model_dir: str = '???'
- log_level: str = 'info'
- SUPPORTED_EMBEDDING_BACKENDS = ['PARTITION_BUFFER', 'DEVICE_MEMORY', 'HOST_MEMORY']
- SUPPORTED_EDGE_BACKENDS = ['FLAT_FILE', 'DEVICE_MEMORY', 'HOST_MEMORY']
- SUPPORTED_NODE_BACKENDS = ['DEVICE_MEMORY', 'HOST_MEMORY']
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.NegativeSamplingConfig(num_chunks=1, negatives_per_positive=1000, degree_fraction=0, filtered=False, local_filter_mode='DEG')
- Parameters
num_chunks (int) –
negatives_per_positive (int) –
degree_fraction (float) –
filtered (bool) –
local_filter_mode (str) –
- Return type
None
- num_chunks: int = 1
- negatives_per_positive: int = 1000
- degree_fraction: float = 0
- filtered: bool = False
- local_filter_mode: str = 'DEG'
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.CheckpointConfig(save_best=False, interval=- 1, save_state=False)
- Parameters
save_best (bool) –
interval (int) –
save_state (bool) –
- Return type
None
- save_best: bool = False
- interval: int = -1
- save_state: bool = False
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.PipelineConfig(sync=True, gpu_sync_interval=16, gpu_model_average=True, staleness_bound=16, batch_host_queue_size=4, batch_device_queue_size=4, gradients_device_queue_size=4, gradients_host_queue_size=4, batch_loader_threads=4, batch_transfer_threads=2, compute_threads=1, gradient_transfer_threads=2, gradient_update_threads=4)
- Parameters
sync (bool) –
gpu_sync_interval (int) –
gpu_model_average (bool) –
staleness_bound (int) –
batch_host_queue_size (int) –
batch_device_queue_size (int) –
gradients_device_queue_size (int) –
gradients_host_queue_size (int) –
batch_loader_threads (int) –
batch_transfer_threads (int) –
compute_threads (int) –
gradient_transfer_threads (int) –
gradient_update_threads (int) –
- Return type
None
- sync: bool = True
- gpu_sync_interval: int = 16
- gpu_model_average: bool = True
- staleness_bound: int = 16
- batch_host_queue_size: int = 4
- batch_device_queue_size: int = 4
- gradients_device_queue_size: int = 4
- gradients_host_queue_size: int = 4
- batch_loader_threads: int = 4
- batch_transfer_threads: int = 2
- compute_threads: int = 1
- gradient_transfer_threads: int = 2
- gradient_update_threads: int = 4
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.TrainingConfig(batch_size=1000, negative_sampling='???', num_epochs=10, pipeline=PipelineConfig(sync=True, gpu_sync_interval=16, gpu_model_average=True, staleness_bound=16, batch_host_queue_size=4, batch_device_queue_size=4, gradients_device_queue_size=4, gradients_host_queue_size=4, batch_loader_threads=4, batch_transfer_threads=2, compute_threads=1, gradient_transfer_threads=2, gradient_update_threads=4), epochs_per_shuffle=1, logs_per_epoch=10, save_model=True, checkpoint=CheckpointConfig(save_best=False, interval=- 1, save_state=False), resume_training=False, resume_from_checkpoint='')
- Parameters
batch_size (int) –
negative_sampling (marius.tools.configuration.marius_config.NegativeSamplingConfig) –
num_epochs (int) –
pipeline (marius.tools.configuration.marius_config.PipelineConfig) –
epochs_per_shuffle (int) –
logs_per_epoch (int) –
save_model (bool) –
checkpoint (marius.tools.configuration.marius_config.CheckpointConfig) –
resume_training (bool) –
resume_from_checkpoint (str) –
- Return type
None
- batch_size: int = 1000
- negative_sampling: marius.tools.configuration.marius_config.NegativeSamplingConfig = '???'
- num_epochs: int = 10
- pipeline: marius.tools.configuration.marius_config.PipelineConfig = PipelineConfig(sync=True, gpu_sync_interval=16, gpu_model_average=True, staleness_bound=16, batch_host_queue_size=4, batch_device_queue_size=4, gradients_device_queue_size=4, gradients_host_queue_size=4, batch_loader_threads=4, batch_transfer_threads=2, compute_threads=1, gradient_transfer_threads=2, gradient_update_threads=4)
- epochs_per_shuffle: int = 1
- logs_per_epoch: int = 10
- save_model: bool = True
- checkpoint: marius.tools.configuration.marius_config.CheckpointConfig = CheckpointConfig(save_best=False, interval=-1, save_state=False)
- resume_training: bool = False
- resume_from_checkpoint: str = ''
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.EvaluationConfig(batch_size=1000, negative_sampling='???', pipeline=PipelineConfig(sync=True, gpu_sync_interval=16, gpu_model_average=True, staleness_bound=16, batch_host_queue_size=4, batch_device_queue_size=4, gradients_device_queue_size=4, gradients_host_queue_size=4, batch_loader_threads=4, batch_transfer_threads=2, compute_threads=1, gradient_transfer_threads=2, gradient_update_threads=4), epochs_per_eval=1, checkpoint_dir='')
- Parameters
batch_size (int) –
negative_sampling (marius.tools.configuration.marius_config.NegativeSamplingConfig) –
pipeline (marius.tools.configuration.marius_config.PipelineConfig) –
epochs_per_eval (int) –
checkpoint_dir (str) –
- Return type
None
- batch_size: int = 1000
- negative_sampling: marius.tools.configuration.marius_config.NegativeSamplingConfig = '???'
- pipeline: marius.tools.configuration.marius_config.PipelineConfig = PipelineConfig(sync=True, gpu_sync_interval=16, gpu_model_average=True, staleness_bound=16, batch_host_queue_size=4, batch_device_queue_size=4, gradients_device_queue_size=4, gradients_host_queue_size=4, batch_loader_threads=4, batch_transfer_threads=2, compute_threads=1, gradient_transfer_threads=2, gradient_update_threads=4)
- epochs_per_eval: int = 1
- checkpoint_dir: str = ''
- merge(input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
input_config (omegaconf.dictconfig.DictConfig) –
- class marius.tools.configuration.marius_config.MariusConfig
- model: marius.tools.configuration.marius_config.ModelConfig = ModelConfig(random_seed=1062056610952888119, learning_task='???', encoder='???', decoder='???', loss='???', dense_optimizer=OptimizerConfig(type='ADAGRAD', options=AdagradOptions(learning_rate=0.1, eps=1e-10, init_value=0, lr_decay=0, weight_decay=0)), sparse_optimizer=OptimizerConfig(type='ADAGRAD', options=AdagradOptions(learning_rate=0.1, eps=1e-10, init_value=0, lr_decay=0, weight_decay=0)))
- storage: marius.tools.configuration.marius_config.StorageConfig = StorageConfig(device_type='cpu', device_ids=[], dataset=DatasetConfig(dataset_dir='???', num_edges='???', num_nodes='???', num_relations=1, num_train='???', num_valid=-1, num_test=-1, node_feature_dim=-1, rel_feature_dim=-1, num_classes=-1, initialized=False), edges=StorageBackendConfig(type='DEVICE_MEMORY', options=StorageOptions(dtype='int')), nodes=StorageBackendConfig(type='DEVICE_MEMORY', options=StorageOptions(dtype='int')), embeddings=StorageBackendConfig(type='DEVICE_MEMORY', options=StorageOptions(dtype='float')), features=StorageBackendConfig(type='DEVICE_MEMORY', options=StorageOptions(dtype='float')), prefetch=True, shuffle_input=True, full_graph_evaluation=True, export_encoded_nodes=False, model_dir='???', log_level='info')
- training: marius.tools.configuration.marius_config.TrainingConfig = TrainingConfig(batch_size=1000, negative_sampling='???', num_epochs=10, pipeline=PipelineConfig(sync=True, gpu_sync_interval=16, gpu_model_average=True, staleness_bound=16, batch_host_queue_size=4, batch_device_queue_size=4, gradients_device_queue_size=4, gradients_host_queue_size=4, batch_loader_threads=4, batch_transfer_threads=2, compute_threads=1, gradient_transfer_threads=2, gradient_update_threads=4), epochs_per_shuffle=1, logs_per_epoch=10, save_model=True, checkpoint=CheckpointConfig(save_best=False, interval=-1, save_state=False), resume_training=False, resume_from_checkpoint='')
- evaluation: marius.tools.configuration.marius_config.EvaluationConfig = EvaluationConfig(batch_size=1000, negative_sampling='???', pipeline=PipelineConfig(sync=True, gpu_sync_interval=16, gpu_model_average=True, staleness_bound=16, batch_host_queue_size=4, batch_device_queue_size=4, gradients_device_queue_size=4, gradients_host_queue_size=4, batch_loader_threads=4, batch_transfer_threads=2, compute_threads=1, gradient_transfer_threads=2, gradient_update_threads=4), epochs_per_eval=1, checkpoint_dir='')
- marius.tools.configuration.marius_config.type_safe_merge(base_config, input_config)
Merges under specified dictionary config into the current configuration object :type input_config:
DictConfig
:param input_config: The input configuration dictionary :return: Structured output config- Parameters
base_config (marius.tools.configuration.marius_config.MariusConfig) –
input_config (omegaconf.dictconfig.DictConfig) –
- marius.tools.configuration.marius_config.initialize_model_dir(output_config)
- marius.tools.configuration.marius_config.infer_model_dir(output_config)
- marius.tools.configuration.marius_config.load_config(input_config_path, save=False)
This function loads an input user specified configuration file and creates a full configuration file with all defaults set based on the input :param input_config_path: path to the input configuration file :save If true, the full configuration file will be saved to <dir_of_input_config>/full_config.yaml :return: config dict object