DataLoader
-
class marius.data.DataLoader
-
__init__(self: marius._data.DataLoader, graph_storage: GraphModelStorage, learning_task: str, training_config: marius._config.TrainingConfig, evaluation_config: marius._config.EvaluationConfig, encoder_config: marius._config.EncoderConfig) → None
-
__init__(self: marius._data.DataLoader, graph_storage: GraphModelStorage, learning_task: str, batch_size: int = 1000, neg_sampler: marius._data.samplers.NegativeSampler = None, nbr_sampler: marius._data.samplers.NeighborSampler = None, train: bool = False) → None
-
__init__(self: marius._data.DataLoader, edges: Optional[torch.Tensor], learning_task: str, nodes: Optional[torch.Tensor] = None, node_features: Optional[torch.Tensor] = None, node_embeddings: Optional[torch.Tensor] = None, node_optim_state: Optional[torch.Tensor] = None, node_labels: Optional[torch.Tensor] = None, train_edges: Optional[torch.Tensor] = None, batch_size: int = 1000, neg_sampler: marius._data.samplers.NegativeSampler = None, nbr_sampler: marius._data.samplers.NeighborSampler = None, filter_edges: List[torch.Tensor] = [], train: bool = False) → None
-
getBatch(self: marius._data.DataLoader, device: Optional[torch.device] = None, perform_map: bool = True) → marius._data.Batch
-
property all_read
-
property batch_id_offset
-
property batches
-
property batches_left
-
property batches_processed
-
clearBatches(self: marius._data.DataLoader) → None
-
property current_edge
-
edgeSample(self: marius._data.DataLoader, batch: marius._data.Batch) → None
-
property edge_buckets_per_buffer
-
property edge_sampler
-
epochComplete(self: marius._data.DataLoader) → bool
-
property epochs_processed
-
property evaluation_config
-
property evaluation_negative_sampler
-
property evaluation_neighbor_sampler
-
finishedBatch(self: marius._data.DataLoader) → None
-
getBatchesProcessed(self: marius._data.DataLoader) → int
-
getEpochsProcessed(self: marius._data.DataLoader) → int
-
getNextBatch(self: marius._data.DataLoader) → marius._data.Batch
-
getNumEdges(self: marius._data.DataLoader) → int
-
property graph_storage
-
hasNextBatch(self: marius._data.DataLoader) → bool
-
initializeBatches(self: marius._data.DataLoader, prepare_encode: bool = False) → None
-
isTrain(self: marius._data.DataLoader) → bool
-
loadCPUParameters(self: marius._data.DataLoader, batch: marius._data.Batch) → None
-
loadGPUParameters(self: marius._data.DataLoader, batch: marius._data.Batch) → None
-
loadStorage(self: marius._data.DataLoader) → None
-
property negative_sampler
-
property neighbor_sampler
-
nextEpoch(self: marius._data.DataLoader) → None
-
nodeSample(self: marius._data.DataLoader, batch: marius._data.Batch) → None
-
property node_ids_per_buffer
-
setActiveEdges(self: marius._data.DataLoader) → None
-
setActiveNodes(self: marius._data.DataLoader) → None
-
setBufferOrdering(self: marius._data.DataLoader) → None
-
setTestSet(self: marius._data.DataLoader) → None
-
setTrainSet(self: marius._data.DataLoader) → None
-
setValidationSet(self: marius._data.DataLoader) → None
-
property train
-
property training_config
-
property training_negative_sampler
-
property training_neighbor_sampler
-
unloadStorage(self: marius._data.DataLoader, write: bool = False) → None
-
updateEmbeddings(self: marius._data.DataLoader, batch: marius._data.Batch, gpu: bool = False) → None